Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36236337

RESUMEN

Accurate calibration of low-cost gas sensors is, at present, a time consuming and difficult process. Laboratory calibration and field calibration methods are currently used, but laboratory calibration is generally discounted due to poor transferability, and field methods requiring several weeks are standard. The Enhanced Ambient Sensing Environment (EASE) method described in this article, is a hybrid of the two, combining the advantages of a laboratory calibration with the increased accuracy of a field calibration. It involves calibrating sensors inside a duct, drawing in ambient air with similar properties to the site where the sensors will operate, but with the added feature of being able to artificially increases or decrease pollutant levels, thus condensing the calibration period required. Calibration of both metal-oxide (MOx) and electrochemical (EC) gas sensors for the measurement of NO2 and O3 (0-120 ppb) were conducted in EASE, laboratory and field environments, and validated in field environments. The EC sensors performed marginally better than MOx sensors for NO2 measurement and sensor performance was similar for O3 measurement, but the EC sensor nodes had less node inter-node variability and were more robust. For both gasses and sensor types the EASE calibration outperformed the laboratory calibration, and performed similarly to or better than the field calibration, whilst requiring a fraction of the time.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Calibración , Monitoreo del Ambiente/métodos , Dióxido de Nitrógeno/análisis , Óxidos
2.
Sci Total Environ ; 612: 809-821, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28881304

RESUMEN

The biogenic aerosol contribution to atmospheric particulate matter (PM) mass concentration is usually neglected due to the difficulty in identifying its components, although it can be significant. In the Metropolitan Area of São Paulo (MASP)-Brazil, several studies have been performed to identify sources for PM, revealing vehicular emissions and soil re-suspension as the main identified sources. The organic fraction has been related primarily to biomass burning (BB) and fuel combustion, although there is significant presence of green areas in the city which render biogenic emissions as an additional source of organic carbon (OC). The objectives of this work are to (i) characterise the composition of the PM10 (ii) estimate the relative mass contribution of fungal spores to PM concentrations with sizes smaller than 10µm (PM10) in MASP and (iii) assess the main sources of PM10. To achieve these objectives, we measured markers of biogenic sources and BB, during the fall-winter transition, which along with other constituents, such as ions, organic/elemental carbon, elemental composition and fungal spore concentrations, help assess the PM10 sources. We used receptor models to identify distinct source-related PM10 fractions and conversion factors to convert biomarker concentrations to fungal mass. Our results show the mean contributions of fungal aerosol to PM10 and OC mass were 2% and 8%, respectively, indicating the importance of fungal spores to the aerosol burden in the urban atmosphere. Using specific rotation factor analysis, we identified the following factors contributing to PM: soil re-suspension, biogenic aerosol, secondary inorganic aerosol, vehicular emissions and BB/isoprene-related secondary organic aerosol (I-SOA). BB/I-SOA was the main source representing 28% of the PM10 mass, while biogenic aerosol explained a significant (11%) fraction of the PM10 mass as well. Our findings suggest that primary biogenic aerosol is an important fraction of PM10 mass, yet not considered in most studies.


Asunto(s)
Microbiología del Aire , Contaminantes Atmosféricos/análisis , Atmósfera/análisis , Biomarcadores/análisis , Monitoreo del Ambiente , Hongos , Aerosoles , Biomasa , Brasil , Ciudades , Material Particulado , Estaciones del Año
3.
Astrobiology ; 13(3): 303-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23469863

RESUMEN

Astrobiology is a transdisciplinary field with extraordinary potential for the scientific community. As such, it is important to educate the community at large about the growing importance of this field to increase awareness and scientific content learning and expose potential future scientists. To this end, we propose the creation of a traveling museum exhibit that focuses exclusively on astrobiology and utilizes modern museum exhibit technology and design. This exhibit (the "Astrobiology Road Show"), organized and evaluated by an international group of astrobiology students and postdocs, is planned to tour throughout the Americas.


Asunto(s)
Relaciones Comunidad-Institución , Exposiciones como Asunto , Exobiología/educación , Medio Ambiente Extraterrestre , Vida , Proyectos de Investigación , Viaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...